The effect of nano-scale topography on osteogenic differentiation of mesenchymal stem cells.

نویسندگان

  • Faezeh Faghihi
  • Mohamadreza Baghaban Eslaminejad
چکیده

BACKGROUND Large bone defects resulting from trauma or disease pose a threat to humans. Thus far, tissue engineering as an important clinical approach uses cells, growth factors and scaffolds to regenerate large areas of damaged bone tissue. Since bone is a nanocomposite structure, it is assumed that nanomaterial scaffolds can induce or promote osteogenesis by mimicking the cell niche at nano level. METHODS AND RESULTS In this review we highlighted the effect of nano-scale topography on osteogenic differentiation of Mesenchymal Stem Cells (MSCs) as potent cell candidates in bone engineered constructs. The key point in the induction of differentiation by nanomaterials is the discontinuity in their topography. This leads to alteration in protein adsorption and restriction of extracellular matrix deposition by the cells and consequently leads to changes in cell morphology and the frequency of accessible sites for cell adhesion. Here, we have reviewed the literature on the role of different types of nanomateial scaffolds in osteogenic differentiation of these cells. Since little is known about the underlying molecular networks induced by nanomaterials, we also reviewed possible underlying mechanisms of nanotopographical effects on the osteogenic differentiation of MSCs. CONCLUSIONS Nano-scale materials provide a niche which is very similar to native bone in geometry and stiffness. Such nano-scale topographies improve the function of MSC-based engineered constructs in regeneration of bone defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of electrospun poly(lactic acid) and nanohydroxyapatite nanofibers’ diameter on proliferation and differentiation of mesenchymal stem cells

Objective(s): Electrospun nanofibrous mats of poly(lactic acid) (PLA) and nanohydroxyapatite (nano-HA) were prepared and proliferation and differentiation of mesenchymal stem cells on the prepared nanofibers were investigated in this study. Materials and Methods: PLA/nano-HA nanofibers were prepared by electrospinning. The effects of process parameters, such as nano-HA concentration, distance, ...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

The osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells

Objective(s):Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed   to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concen...

متن کامل

Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow

Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...

متن کامل

Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia

دوره 158 1  شماره 

صفحات  -

تاریخ انتشار 2014